United Arab Emirates

Official name
United Arab Emirates
ISO alpha-2 code
AE
ISO alpha-3 code
ARE
ISO numeric-3 code
784
Continent
Asia

Turbinaria peltata | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
It occurs on sandy reef flats and deep sandy reef bases at depths to 25 m; it is commonly found from 9-20 m, rarely from 3-5 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanova 2002). It forms plates of over 1 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Turbinaria peltata | (Esper, 1794)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the species name and taxonomic authority fro mTurbinaria peltata (Esper, 1794) toDuncanopsammia peltata (Esper, 1790) . For reference please see WoRMS: <a href=""http://www.marinespecies.org/aphia.php?p=taxdetails&id=207512"">http://www.marinespecies.org/aphia.php?p=taxdetails&id=207512</a>. C. Linardich 5Jan2022
Taxon distribution as listed in assessment
This species has been reported along both coasts of the UAE (Veron 2000), including Dubai (Riegl 1999).Elsewhere, it is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Least Concern
Assessment status abreviation
LC
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This coral is likely common along both coasts of the UAE. Elsewhere, species of Turbinaria have demonstrated low susceptibility to bleaching and the deeper water habitat of this species may provide some buffer from bleaching. Species-specific population data are not available; however, coral reef habitat declines do not seem to be a good proxy for population declines in the Gulf as it often occurs in deeper water in solitary patches. Therefore, this species is listed as Least Concern. No regional adjustment is made to the Least Concern listing. Escalating anthropogenic stressors, including global climate change, disease and coastal construction, may impact this species in the future.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature and salinity variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Species of Turbinaria appear to be more resilient to elevated water temperatures, as evidenced by limited bleaching and mortality during mass bleaching events on the Great Barrier Reef (Jones 2008) and in the Gulf of Thailand (Sutthacheep et al. 2013). Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Anomastraea irregularis | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments. It is found in turbid environments at the base of reefs and in intertidal pools, generally to depths of 20 m. In Dubai, it was found on natural reefs, but not on nearby man-made breakwaters (Burt et al. 2010).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Anomastraea irregularis | Marenzeller, 1901
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the family from Siderastreidae to Coscinaraeidae according to the WoRMS online database. - C. Linardich 12Jan2022
Taxon distribution as listed in assessment
This species found throughout the entire Gulf (Riegl et al. 2012). In UAE waters, it is known from both coasts (Veron 2000, Riegl et al. 2012). Elsewhere, it is found in the Western Indian Ocean from the Gulf to South Africa, including the Red Sea.
Assessed status
Asessment status in full
Vulnerable
Assessment status abreviation
VU
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species likely occurs along both coasts of the UAE. It is common but never abundant in the Gulf. The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Detailed population decline data are not available for anywhere in the UAE. It appears to be particularly susceptible to bleaching; in 2010, it was among the species most affected by the extreme temperatures. It has not been reported in transects in Abu Dhabi since 2010, although occasional colonies have been observed outside of transects. The 2017 bleaching event caused substantial declines of even resilient coral taxa (e.g., Favia and Favites) and overall, coral mortality exceeded 70% in shallow-water habitats of Abu Dhabi. As Abu Dhabi represents approximately half of this species' distribution in the UAE, it is suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011). During the 2010 mass bleaching event, this species (along with species of Acropora and Porites harrisoni) exhibited the worst bleaching (Riegl et al. 2011). Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by crown-of thorns starfish, disease, and a number of localized threats. Crown-of-thorns starfish (COTS) (Acanthaster planci) are found throughout the Pacific and Indian Oceans, and the Red Sea. These starfish voracious predators of reef-building corals, with a preference for branching and tabular corals such as Acropora species. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts of COTS have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Hydnophora exesa | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species is found in all reef environments, especially lagoons and reef slopes, to 30 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Hydnophora exesa | (Pallas, 1766)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxon distribution as listed in assessment
This species was previously reported as occurring along both coasts of the UAE (Veron 2000); however, in the Gulf, only a single specimen is known, from Qaro Island, Kuwait (Carpenter et al. 1997, Riegl et al. 2012). Individuals of Hydnophora have been reported from Larak and Abu Musa, Iran and likely also occur at other islands closer to the Strait of Hormuz (Riegl et al. 2012). There is a single record of this species from Fujairah, UAE (R. Bento pers. comm. 2019); as such, its distribution in UAE waters is uncertain. Elsewhere, this species is widely distributed in the Indo-West Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species has been reported from both coasts of the UAE, but there is only one record from UAE waters (Fujairah). The most important known threat for acroporids is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in the UAE is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Acropora downingi | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments. It occurs on shallow margins of fringing reefs and submerged reef patches (Wallace 1999). This species is found from 1-10 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Acropora downingi | Wallace, 1999
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
This species is sometimes confused with the similar Acropora clathrata (Riegl et al. 2012).
Taxon distribution as listed in assessment
This species found throughout the entire Gulf (Riegl et al. 2012). In UAE waters, it is known from both coasts (Grandcourt 2007, Riegl et al. 2012); however, acroporids have been largely extirpated from the UAE (Grizzle et al. 2016, Burt et al. 2019). Overall, only about 132 km<sup>2</sup> of coral reef habitat remains in UAE waters (Grizzle et al. 2016), though another estimate suggests coral habitat may be higher, up to 310 km<sup>2</sup> in Abu Dhabi alone (AED 2016); however, the cover of Acropora throughout much of the UAE is negligible.Elsewhere, this species occurs in the Arabian Sea from the Sea of Oman to Somalia, including the Red Sea and the Gulf of Aden.
Assessed status
Asessment status in full
Critically Endangered
Assessment status abreviation
CR
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This acroporid coral is common but infrequent along both coasts of the UAE. Acroporids were dominant coral species historically, but have largely been extirpated from reefs within UAE waters since the 1970s. The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Species-specific population decline data are not available and therefore are inferred based on accelerating decline in coverage of Acropora from about 70% of coral cover in the 1970s to 1.4% in the 2010s. As a result, it is inferred that the population of this species has declined by at least 90% over the past three generations (30 years). Therefore, this species is listed as Critically Endangered A2bc. No regional adjustment is made to the Critically Endangered listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008) as well as shifts in community structure (e.g,. Bento et al. 2016, Grizzle et al. 2016, Burt et al. 2019 ). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Other threats include the crown-of-thorns starfish (Acanthaster planci), which has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within since the 1990s (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004), supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Platygyra daedalea | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in most reef environments, especially back reef margins. It is commonly found from 1-15 m, with mass colonies from 3-11 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanova 2002). This species is found on subtidal rock and rocky reefs, on the back and foreslope of the reef, and in lagoons. It may be found in the outer reef channel. This species is found to 30 m. Colonies may be over a metre in diameter (Wood 1983).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Platygyra daedalea | (Ellis & Solander, 1786)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
{Attention RLU: Please change the family from Faviidae to Merulinidae . For reference please see WoRMS. - C. Linardich 18Jan2022}
Taxon distribution as listed in assessment
This species occurs along both coasts of the UAE (Veron 2000, Riegl et al. 2012, Foster and Foster 2013). Elsewhere, it is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Vulnerable
Assessment status abreviation
VU
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This massive coral is common along both coasts of the UAE. Faviids in general have low susceptibility to bleaching, and experienced localized increases in size. However, a more recent bleaching event caused substantial declines of Platygyra spp. in shallow-water habitats of Abu Dhabi, approaching 70%. Although declines have not been reported elsewhere in the UAE, Abu Dhabi represents approximately half of this species' distribution in the UAE and it is therefore suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Montipora danae | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments on upper to lower reef slopes and in lagoons. This species is found to at least 40 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Montipora danae | (Milne Edwards & Haime, 1851)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
{Attention RLU: Please change the taxonomic authority from ( Milne Edwards & Haime, 1851) to Milne Edwards & Haime, 1851 . Reference is WoRMS. - C. Linardich 17Jan2022}
Taxon distribution as listed in assessment
Montipora cf. danae was reported from Musandam and Fujairah (R. Bento pers. comm. 2019) and unidentified species of Montipora were reported from UAE waters in the Sea of Oman (Foster et al. 2011). Therefore, the presence of this species in UAE waters is likely but unconfirmed. Elsewhere, it is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species likely occurs in UAE waters of the Sea of Oman, but data are extremely limited on its distribution . The most important known threat for acroporids is extensive reduction of coral reef habitat due to a combination of threats. In general, coral habitat in UAE has been declining, and records of Montipora have decreased. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient; given the extensive threats to acroporid corals in UAE, and their resultant decline, further research on the distribution of this species is necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. The bleaching of coral reefs, which has become increasingly frequent since the 1970s, is related to the ongoing rise in ocean in temperatures as a result of global climate change. Bleaching events, leading to coral mortality, are predicted to become more frequent and severe. Species in the genus Montipora are susceptible to bleaching. However, this species is extremely widespread in tropical, subtropical habitats, and across a range of depths, providing a possible degree of resilience to threats relating to global warming. Species in the genus tend to be quite fast growing and reproduce asexually by fragmentation, so if they can re-establish after mortality, they can recover quickly.Other threats include predation by crown-of-thorns starfish (Acanthaster planci), which have been observed preferentially preying upon members of this genus (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse. In the summer months of 2001/2002 and 2002/2003 a disease causing atramentous necrosis was observed on this species in the fringing reefs of Magnetic Island, Australia. The disease spread rapidly and was gone quickly causing elevated levels of mortality. Temperature-induced coral disease outbreaks represent an added problem for corals during the warmer summer months (Jones et al. 2004).Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Porites harrisoni | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species is found in shallow fringing reefs, generally to depths of 15 m. It prefers areas of low exposure, and tolerates sedimented conditions well (Sheppard and Sheppard 1991).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Porites harrisoni | Veron, 2002
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
{Attention RLU: Please change the taxonomic authority from Veron, 2002 to Veron, 2000. Reference is WoRMS. - C. Linardich 18Jan2022}
Taxon distribution as listed in assessment
This species is reported from UAE waters in both the Gulf and Sea of Oman (Riegl et al. 2012, Grizzle et al. 2016).It is regionally endemic to the northwestern Indian Ocean, where it is known from the Gulf, Sea of Oman, Arabian Sea and Red Sea (Veron 2000).
Assessed status
Asessment status in full
Endangered
Assessment status abreviation
EN
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This stony coral is common and can be a dominant species along both coasts of the UAE. It can survive sedimentation and has low susceptibility to bleaching, but it is particularly susceptible to disease and extensive reduction of coral reef habitat due to a combination of threats. This species is common in western Abu Dhabi and becomes less common northeast along the UAE coast to Fujairah. Species-specific population trend data are not available, therefore are based on the data available for the genus. Despite its relatively low susceptibility to bleaching, the most recent bleaching event (2017) resulted in over 75% mortality of Porites in shallow-water habitats of Abu Dhabi; no additional data are available from elsewhere in the UAE. However, as the majority of this species' distribution in the UAE occurs in Abu Dhabi, the overall population decline likely approaches that documented in Abu Dhabi and certainly exceeds 50%. This species is therefore listed as Endangered A2bc. No regional adjustment is made to the Endangered listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
No
Endemism Notes
Is an endemic?: No
Endemism specifics: Regionally endemic to Northwest Indian Ocean (Gulf, Sea of Oman, Arabian Sea, Red Sea)
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).The genus is not particularly susceptible to bleaching, experiencing low mortality during three major bleaching events in the Gulf (Riegl et al. 2012). However, it is more prone to disease than many other corals (Riegl et al. 2012). Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by a number of localized threats. Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Coscinaraea columna | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs on a wide variety of reef slopes from five to 30 m, generally to depths of 30 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Coscinaraea columna | Dana, 1846
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the species name f rom Coscinaraea columna toPsammocora columna and change the family from Siderastreidae to Coscinaraeidae . For reference please see WoRMS: <a href=""http://www.marinespecies.org/aphia.php?p=taxdetails&id=207256"">http://www.marinespecies.org/aphia.php?p=taxdetails&id=207256</a>. C. Linardich 4Jan2022
Taxon distribution as listed in assessment
This species has been reported from the Gulf (Carpenter et al. 1997, Veron 2000, Riegl et al. 2012), including the UAE (Foster and Foster 2013, R. Bento pers. comm. 2019). Unidentified Coscinaraea have also been reported from UAE waters in the Sea of Oman (Foster and Foster 2013). However, the specimens examined from the Gulf do not share characteristics of the holotype of Coscinaraea columna; it is possible that plasticity in the characters of C. monile resulted in the identification of two species from the Gulf instead of one (Riegl et al. 2012). As a result, the distribution of this species in the UAE is possible but unconfirmed. Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species may occur along both coasts of the UAE, but its presence the Gulf has been questioned. The most important known threat is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in the UAE is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by crown-of thorns starfish, disease, and a number of localized threats. Crown-of-thorns starfish (COTS) (Acanthaster planci) are found throughout the Pacific and Indian Oceans, and the Red Sea. These starfish voracious predators of reef-building corals, with a preference for branching and tabular corals such as Acropora species. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts of COTS have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Leptastrea inaequalis | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in a wide range of reef environments but prefers tropical habitats. This species is found on the back and foreslope, in lagoons, and on inter-reef rubble substrate to 20 m. Species in this genus may be overlooked because of their low growth profile and the relatively small colony size, seldom exceeding 25 cm in diameter (Wood 1983).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Leptastrea inaequalis | Klunzinger, 1879
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the family from Faviidae to Leptastreidae. Reference is WoRMS. - C. Linardich 13Jan2022
Taxon distribution as listed in assessment
This species was previously reported as occurring along both coasts of the UAE (Veron 2000). However, reports from the Gulf have been questioned (Riegl et al. 2012); as such, its presence in UAE waters is likely but unconfirmed. Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species has been reported from both coasts of the UAE, but its presence the Gulf has been questioned; as such, its distribution in UAE waters is uncertain. Faviids in general have low susceptibility to bleaching and experienced local increases in size. However, a more recent bleaching event caused substantial declines of even more tolerant species (e.g., Favia and Favites) in the UAE. In Fujairah, species of Leptastrea are a low proportion of the overall coral cover and data were insufficient to estimate declines in recent years. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Psammocora albopicta | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species is widespread on reefs, generally to depths of 28 m. In general, species of Psmmaocora are considered among the most opportunistic, because of the capacity to rapidly recolonize open areas after disturbances (Guzmán and Cortés 2001).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Psammocora albopicta | Benzoni, 2007
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
{Attention RLU: Please change the taxonomic authority from Benzoni, 2007 to Benzoni, 2006 and the family from Siderastreidae to Psammocoridae. Reference is WoRMS. - C. Linardich 18Jan2022} This species has previously been identified as Psammocora superficialis by Carpenter et al. (1997) and Harrison (1998).
Taxon distribution as listed in assessment
This species has been reported from Kuwait and Saudi Arabia (Benzoni 2006) but is likely found throughout the Gulf (Riegl et al. 2012). Records of Psammocora superficialis from UAE waters (e.g,. Fujairah: R. Bento pers. comm. 2019) likely refer to P. albopicta. However, given the recent taxonomic revision, its distribution with the UAE remains uncertain. Elsewhere, it is reported from disjunct localities in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This recently-described coral likely occurs along both coasts of the UAE. Species-specific information is limited. However, species in the genus Psammocora seem to be relatively resistant and resilient to anthropogenic stressors. The most important known threat is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in the UAE is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by disease and a number of localized threats. The severity of these combined threats to the global population of each individual species is not known.Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off