United Arab Emirates

Official name
United Arab Emirates
ISO alpha-2 code
AE
ISO alpha-3 code
ARE
ISO numeric-3 code
784
Continent
Asia

Coscinaraea monile | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in most reef environments, generally to depths of 50 m. It was reported from natural reefs and nearby man-made breakwaters in Dubai (Burt et al. 2010).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Coscinaraea monile | Foskål, 1775
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the taxonomic authority f rom Foskål, 1775 to (Forskål, 1775) and the family from Siderastreidae to Coscinaraeidae . For reference please see WoRMS. - C. Linardich 12Jan2022
Taxon distribution as listed in assessment
This species has been reported from the Gulf (Riegl et al. 2012), including the UAE (Burt et al. 2008, 2010). Unidentified Coscinaraea were reported from UAE waters in the Sea of Oman (Foster and Foster 2013) but C. monile was not observed in other surveys (Grizzle et al. 2016). Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Vulnerable
Assessment status abreviation
VU
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This coral is likely found along both coasts of the UAE. Although species-specific population decline data are not available, this species is found on natural reefs and man-made breakwaters and was not adversely affected by the 1996 and 1998 mass bleaching events. However, a more recent bleaching event caused substantial declines of Cosinaraea monile in shallow-water habitats of Abu Dhabi of about 85%. No additional population trend data are available. However, as Abu Dhabi represents approximately half of this species' distribution in the UAE, it is suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by disease and a number of localized threats.Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Acropora horrida | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments. It is found in turbid water around fringing reefs, and subtidally on protected deepwater flats, lagoons, and sandy slopes (Wallace 1999). This species is found from 5-20 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Acropora horrida | (Dana, 1846)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Acropora parilis and Acropora sekiseiensis are now synonyms of this species.
Taxon distribution as listed in assessment
This species was reported from Dubai, UAE (Riegl 1999, Riegl et al. 2001) and as occurring along both coasts of the UAE (Grandcourt 2007). Despite this and other reports from the Gulf (such as Vogt 1996, Rahmani et al. 2013), its presence in the Gulf could not be verified by Riegl et al. (2012). Additional research is needed to determine the complete distribution of this species within the UAE. Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species has been reported along the Gulf coast of the UAE, but its presence in the Gulf has been questioned. In general, acroporids were dominant coral species historically, but have largely been extirpated from reefs within UAE waters since the 1970s. The most important known threat for acroporids is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species within UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to acroporid corals in UAE, and their resultant decline, if this species is determined to occur in the Gulf, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Other threats include the crown-of-thorns starfish (Acanthaster planci), which has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within since the 1990s (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004), supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Acropora valida | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments. It is found in a wide range of reef environments and rocky foreshores. It is found intertidally on the outer reef flat and subtidally on the reef edge and tops of submerged reefs (Wallace 1999). At Gorgona Island, Acropora valida was found in a rocky wall habitat (diabasic type) at approximately 10 m (Prahl and Mejia 1985). This species is found from 1-15 m. The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Acropora valida | (Dana, 1846)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Acropora parapharaonis and Acropora variabilis are now synonyms of this species.
Taxon distribution as listed in assessment
This species has been reported from both coasts of the UAE, specifically from Dubai (Riegl 1999) and Fujairah (Bento 2009). It has been suggested that this species possibly occurred in the southeastern Gulf prior to the 1996-1998 mass bleaching and has since been locally extirpated (Burt et al. 2008, Riegl et al. 2012) or that the records from the Gulf refer to A. arabensis (Riegl et al. 2012). Additional research is needed to determine the complete distribution of this species within the UAE. Elsewhere, it is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species is known from at least two localities in the UAE (Dubai and Fujairah emirates), suggesting that it may have occurred along both coasts of the UAE, but there are conflicting opinions regarding the validity of these records and its current presence and distribution in UAE waters. It may have been locally extirpated from the Gulf coast of the UAE as a result of the 1996-1998 mass bleaching and/or the land reclamation required for the Palm Island developments. In general, acroporids were dominant coral species historically, but have largely been extirpated from reefs within UAE waters since the 1970s. The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient; given the extensive threats to acroporid corals in UAE, and their resultant decline, further research on the distribution of this species is necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Other threats include the crown-of-thorns starfish (Acanthaster planci), which has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within since the 1990s (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004), supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Favites abdita | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in most reef environments. It is commonly found from 1-15 m, rarely from 18-20 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanova 2002). This species is found on subtidal rock and rocky reefs, in the outer reef channel, on the back and foreslope, and in lagoons. It can be found on inter-reef rubble substrate to 40 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Favites abdita | (Ellis & Solander, 1786)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the family from Faviidae to Merulinidae. Reference is the WoRMS online database. - C. Linardich 13Jan2022
Taxon distribution as listed in assessment
This species was reported as occurring along both coasts of the UAE (Veron 2000); however, reports from the Gulf may pertain to A. acuticollis (Riegl et al. 2012). As such, its distribution in UAE waters is uncertain.Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species has been reported from both coasts of the UAE, but given its potential confusion with F. acuticollis, its presence in UAE waters is possible but currently unconfirmed. Faviids in general have low susceptibility to bleaching, and experienced localized increases in size. However, a more recent bleaching event caused substantial declines of even more tolerant species (e.g., Favia and Favites) in the UAE. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Plesiastrea versipora | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
It occurs in most reef environments, including shaded places such as under overhangs. Also, it occurs on rocky foreshores of temperate locations protected from strong wave action. It is commonly found from 12-15 m, rarely from 9-11 m and 18-20 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanova 2002). This species may form large colonies several metres in diameter and occurs in a wide variety of reef habitats. It usually forms rounded colonies in exposed shallow areas and plate-like growths on reef slopes where light intensity is low (Wood 1983). This species is found on subtidal rock and rocky reefs, on the back and foreslope of the reef, and in lagoons. It may be found in the outer reef channel. This species is found to 40 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Plesiastrea versipora | (Lamarck, 1816)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
{Attention RLU: Please change the family from Faviidae to Merulinidae . For reference please see WoRMS. - C. Linardich 18Jan2022}
Taxon distribution as listed in assessment
This species occurs along both coasts of the UAE (Veron 2000, Riegl et al. 2012). Elsewhere, it is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Vulnerable
Assessment status abreviation
VU
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This massive coral likely occurs along both coasts of the UAE. Faviids in general have low susceptibility to bleaching, and experienced localized increases in size. However, a more recent bleaching event caused substantial declines of even resilient coral taxa (e.g., Favia and Favites) in shallow-water habitats of Abu Dhabi. Overall, coral mortality exceeded 70%. This species is too rarely encountered to determine any species- or genus-specific trends. As declines are not currently known elsewhere in the UAE, Abu Dhabi represents approximately half of this species' distribution in the UAE and it is therefore suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Leptastrea pruinosa | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments, but can be found in deeper water, to 40 m. This species typically occurs on subtidal rock and rocky reefs, on the back and foreslope, and in lagoons though it may also be found in the outer reef channel or on inter-tidal rubble substrate.Species in this genus may be overlooked because of their low growth profile and the relatively small colony size, seldom exceeding 25 cm in diameter (Wood 1983).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Leptastrea pruinosa | Crossland, 1952
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: This species is now considered a synonym of Leptastrea purpurea . For reference please see WoRMS: <a href=""http://www.marinespecies.org/aphia.php?p=taxdetails&id=207472"">http://www.marinespecies.org/aphia.php?p=taxdetails&id=207472</a> . C. Linardich 5Jan2022
Taxon distribution as listed in assessment
This species was previously reported as occurring along both coasts of the UAE (Veron 2000). However, reports from the Gulf have been questioned (Riegl et al. 2012) and only a single record from the east coast is known (R. Bento pers. comm. 2019). As such, its distribution in UAE waters is uncertain. Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species has been reported from a single locality along the east coast of the UAE, but no additional information is available regarding its distribution in UAE waters. Faviids in general have low susceptibility to bleaching and experienced local increases in size. However, a more recent bleaching event caused substantial declines of even more tolerant species (e.g., Favia and Favites) in the UAE. In Fujairah, species of Leptastrea are a low proportion of the overall coral cover and data were insufficient to estimate declines in recent years. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Porites mayeri | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species is found in back reef margins, lagoons, and fringing reefs, generally to depths of 20 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Porites mayeri | Vaughan, 1918
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxon distribution as listed in assessment
Specimens of Porites cf. mayeri were reported from Dubai (Riegl 1999, Riegl et al. 2001) and Abu Dhabi (R. Bento pers. comm. 2019); however, the validity of the records of this species from the Western Indian Ocean have been questioned (Veron 2000, Riegl et al. 2012). As such, its distribution in the UAE remains uncertain.Elsewhere, this species is found in the Indo-West Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species was reported from Dubai and Abu Dhabi, but its distribution within the Western Indian Ocean has been questioned. The most important known threat is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in the UAE is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).The genus is not particularly susceptible to bleaching, but is more prone to disease than many other corals. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by a number of localized threats. Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Acropora pharaonis | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments on sheltered reef slopes. This species is found from 5-25 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Acropora pharaonis | (Milne Edwards & Haime, 1860)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the taxonomic authority from (Milne Edwards & Haime, 1860) to (Milne Edwards, 1860) according to the WoRMS online database. - C. Linardich 12Jan2022
Taxon distribution as listed in assessment
This species found throughout the entire Gulf (Riegl et al. 2012). In UAE waters, it is known from both coasts (Grandcourt 2007, Riegl et al. 2012); however, acroporids have been largely extirpated from the UAE (Grizzle et al. 2016, Burt et al. 2019). Overall, only about 132 km<sup>2</sup> of coral reef habitat remains in UAE waters (Grizzle et al. 2016), though another estimate suggests coral habitat may be higher, up to 310 km<sup>2</sup> in Abu Dhabi alone (AED 2016); however, the cover of Acropora throughout much of the UAE is negligible.Elsewhere, it is widely distributed in the Indo-West Pacific, though there is some doubt about the validity of records from the Pacific Ocean (E. Lovell pers. comm. 2008).
Assessed status
Asessment status in full
Critically Endangered
Assessment status abreviation
CR
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This acroporid coral is common but infrequent along both coasts of the UAE. Acroporids were dominant coral species historically, but have largely been extirpated from reefs within UAE waters since the 1970s. The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Species-specific population decline data are not available and therefore are inferred based on accelerating decline in coverage of Acropora from about 70% of coral cover in the 1970s to 1.4% in the 2010s. As a result, it is inferred that the population of this species has declined by at least 90% over the past three generations (30 years). Therefore, this species is listed as Critically Endangered A2bc. No regional adjustment is made to the Critically Endangered listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008) as well as shifts in community structure (e.g,. Bento et al. 2016, Grizzle et al. 2016, Burt et al. 2019 ). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Other threats include the crown-of-thorns starfish (Acanthaster planci), which has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within since the 1990s (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004), supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Acanthastrea echinata | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species is found in most reef environments. This species has a large tolerance range for all reef environments, e.g. differing depths and light, including deep water and reef flats. This species is found to 50 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Acanthastrea echinata | (Dana, 1846)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the family from Mussidae to Lobophylliidae according to the WoRMS online database. C. Linardich 12Jan2022
Taxon distribution as listed in assessment
This species is widely distributed throughout the Gulf (Riegl et al. 2012), including the UAE (Riegl 1999) and has also been reported from UAE waters in the Sea of Oman (Bento 2009).Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Vulnerable
Assessment status abreviation
VU
Assessment status criteria
A2bc
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This coral is uncommon but widespread in UAE waters. It typically occurs in less environmentally extreme environments (e.g., eastern UAE) and seems to be particularly sensitive to coral bleaching. Detailed population decline data are not available for anywhere in the UAE, in part due to its overall rarity and patchiness. Limited species- or genus-specific data are available: it was observed in transects in Abu Dhabi in 2015, but has not been observed since. However, colonies are still present around offshore islands (such as Sir Bu Nair). The 2017 bleaching event caused substantial declines of even resilient coral taxa (e.g., Favia and Favites) and overall, coral mortality exceeded 70% in shallow-water habitats of Abu Dhabi. No additional decline data are available. As Abu Dhabi represents approximately half of its distribution, it is suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off

Favites flexuosa | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Location
Scope (Assessment)
National
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Is there a map available in assessment?
Yes
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments to 20 m. It is found in a wide range of reef environments and rocky foreshores, including subtidal rock and rocky reefs, in the outer reef channel, on the back and foreslope, and in lagoons.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore any population decline rates for the Red List assessment are measured over at least 30 years.
Taxon
Taxa
Favites flexuosa | (Dana, 1846)
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the family from Faviidae to Merulinidae. Reference is the WoRMS online database. - C. Linardich 13Jan2022
Taxon distribution as listed in assessment
This species was reported from Fujairah (R. Bento pers. comm. 2019), but no additional information is available regarding its distribution in UAE waters.Elsewhere, this species is widely distributed in the Indo-Pacific.
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Assessment rationale/justification
This species has been reported from the east coast of the UAE, but no further information is available. Faviids in general have low susceptibility to bleaching, and experienced localized increases in size. However, a more recent bleaching event caused substantial declines of even more tolerant species (e.g., Favia and Favites) in the UAE. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Verified entry
Off