Please note, this National Red List website contains a subset of data whilst we transition to national focal point driven data uploads. We thank you for your patience with this and welcome national contributors to get in touch to update their national dataset. Terms of Use including citation guidance are found here.

The previous dataset is available via: https://archive.nationalredlist.org/. This site is no longer updated but can help with most enquiries whilst we focus on redevelopment.

NRLD - 329943 | Psammocora contigua

Assessment ID
329943
Taxon name
Psammocora contigua
Esper 1797
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Psammocora contigua
Esper 1797
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
siderastreidae
Genus
Psammocora
Species
contigua
Species authority
Esper 1797
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Data Deficient
Abbreviated status
DD
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This Indo-Pacific coral has been reported from localities along both coasts of the UAE, but its distribution has been questioned. Species-specific information is limited. However, species in the genus Psammocora seem to be relatively resistant and resilient to anthropogenic stressors. The most important known threat is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in the UAE is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species has been reported from both coasts of the UAE (e.g., Sheppard and Sheppard 1991, Veron 2000, Riegl et al. 2012, R. Bento pers. comm. 2019); however, given the recent revision of the genus (Stefani et al. 2008, Benzoni et al. 2010), the distribution of this species remains uncertain.Elsewhere, it is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in widely in all reef environments, generally to depths of 30 m. It is commonly found from 9-15 m, and rarely at 1-5 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanova 2002).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature and salinity variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. This species exhibited moderate to high bleaching and moderate mortality in the 1998 bleaching event in Palau (Brunno et al. 2001). In addition to global climate change, corals are also threatened by disease and a number of localized threats. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.