Please note, this National Red List website contains a subset of data whilst we transition to national focal point driven data uploads. We thank you for your patience with this and welcome national contributors to get in touch to update their national dataset. Terms of Use including citation guidance are found here.

The previous dataset is available via: https://archive.nationalredlist.org/. This site is no longer updated but can help with most enquiries whilst we focus on redevelopment.

Assessment ID
329949
Taxon name
Acropora nasuta
(Dana, 1846)
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Acropora nasuta
(Dana, 1846)
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
acroporidae
Genus
Acropora
Species
nasuta
Species authority
(Dana, 1846)
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Data Deficient
Abbreviated status
DD
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This species has been reported as occurring along both coasts of the UAE. It is confirmed from a single locality off Abu Dhabi, which has since been essentially destroyed by the Palm Island developments. In general, acroporids were dominant coral species historically, but have largely been extirpated from reefs within UAE waters since the 1970s. The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient; given the extensive threats to acroporid corals in UAE, and their resultant decline, further research on the distribution of this species is necessary. No regional adjustment is made to the Data Deficient listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
There is a single record of this species from Jebel Ali, Dubai (Riegl et al. 2012); however, it is reported as likely occurring along both coasts of the UAE (Veron et al. 2016). It has been suggested that this species occurred there prior to the 1996-1998 mass bleaching and has since been locally extirpated or that the records refer to A. arabensis (Riegl et al. 2012). Additional research is needed to determine the complete distribution of this species within the UAE. Elsewhere, this species is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments. It is found in all Acropora assemblages, but especially those of upper reef slopes. It is found subtidally on reef edge, slope, and submerged reefs (Wallace 1999). This species is found from 3-15 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Other threats include the crown-of-thorns starfish (Acanthaster planci), which has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within since the 1990s (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004), supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329948
Taxon name
Stylophora danae
Milne Edwards & Haime, 1850
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Stylophora danae
Milne Edwards & Haime, 1850
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
pocilloporidae
Genus
Stylophora
Species
danae
Species authority
Milne Edwards & Haime, 1850
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Data Deficient
Abbreviated status
DD
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This species likely occurs in UAE waters of the Sea of Oman, but data are extremely limited on its distribution. The most important known threat for acroporids is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species is known from a single locality in Fujairah, UAE (R. Bento pers. comm. 2019) and has also been reported from the Iranian Islands in the Strait of Hormuz (Riegl et al. 2012).Elsewhere, it is widely distributed in the Indian and western Pacific oceans.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
It is found on sloping rock faces to about 40 m. The maximum size is approximately 25 cm across.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329947
Taxon name
Pocillopora damicornis
(Linnaeus, 1758)
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Pocillopora damicornis
(Linnaeus, 1758)
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
pocilloporidae
Genus
Pocillopora
Species
damicornis
Species authority
(Linnaeus, 1758)
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Endangered
Abbreviated status
EN
Qualifying criteria (if given)
B1ab(iii)+2ab(iii)
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This coral is known from the Sea of Oman coast of the UAE; it does not occur along the Gulf coast. Based on the known coral reefs along the Sea of Oman coast, the extent of occurrence is likely less than 400 km<sup>2</sup> and the area of occupancy is less than 80 km<sup>2</sup>. This species appears to be particularly susceptible to adverse effects as a result of harmful algal blooms, which resulted in a local extirpation (e.g., at Dibba Reef, Fujairah). Some recovery was documented after the bloom; in the absence of recent, major disturbances, this species is likely to continue to recover, though no current data are available to validate this assumption. However, in light of ongoing and accelerating threats (harmful algal blooms, coral bleaching) resulting from global climate change, this species occurs in less than 5 locations and is experiencing an ongoing decline in the area and quality of habitat. Therefore, this species is assessed as Endangered B1ab(iii)+B2ab(iii). No regional adjustment is made to the Endangered listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species is known from UAE waters in the Sea of Oman (Bento 2009, Foster et al. 2011, Bento et al. 2016, Grizzle et al. 2016). Elsewhere, this species is widely distributed in the Indo-West Pacific and Eastern Tropical Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in all shallow water habitats from exposed reef fronts to mangrove swamps and wharf piles. This species is found in mono-specific stands or multi-species reefs throughout its range from near the surface to a maximum depth of 20 m. In the South China Sea and the Gulf of Siam, it is commonly found from 1-15 m, rarely 18-20 m (Titlyanov and Titlyanova 2002); in Panama, it is found from 0.5-6 m (Sheppard 1982). This species is relatively tolerant of sedimentation and low salinity, as long as there is adequate water motion. Colonies reproduce by fragmentation and by sexual reproduction (broadcast spawning) (Hodgson 1998).Pocillopora species are preyed on by various consumers, including fishes, hermit crabs and gastropods (Glynn 2001, 2003). Mutualistic symbiotic relationships with crab (Trapezia sp.) and alpheid shrimp can help protect the coral from the attack of the crown-of-thorns sea star, Acanthaster planci (Glynn 2001).
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In the Eastern Tropical Pacific, major reef-building corals, including species of Pocillopora, Porites, Pavona and Gardinoseris, catastrophically declined in the Galápagos Archipelago and Cocos Island after 1983. Pocilloporid coral mortality was high, ranging from 51% at Caño Island to 76-85% in Panama and 97-100% in the Galápagos Islands (Glynn et al. 1988). The observed recovery was in large part nullified by the 1997-98 ENSO event (Glynn 2000). In Palau, this species exhibited variable bleaching (0-50%) and low mortality during the 1998 bleaching event (Brunno et al. 2001). Other threats include the crown-of-thorns starfish, Acanthaster planci (Glynn 1994, 2000, 2002). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Harvesting for the curio trade has virtually eliminated pocilloporid corals from Acapulco (Mexico), Bahia Culebra (Costa Rica), Taboga Island (Panama), and parts of Ecuador (Glynn 2001). However, this activity is now largely excluded from Costa Rica and Panama (H. Guzmán pers. comm. 2008).Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329946
Taxon name
Porites lobata
Dana, 1846
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Porites lobata
Dana, 1846
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
poritidae
Genus
Porites
Species
lobata
Species authority
Dana, 1846
Taxonomic notes and synonyms listed
Porites baueri and Porites excavata are now synonyms of this species.
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Near Threatened
Abbreviated status
NT
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This stony coral is common and can be a dominant species along both coasts of the UAE. It can survive sedimentation and has low susceptibility to bleaching, but other species of Porites are particularly susceptible to disease and extensive reduction of coral reef habitat due to a combination of threats. This species is among the most common corals in Fujairah and occurs along the entire coast of the UAE, but becomes less common to the west. Species-specific population trend data are not available and therefore are based on the data available for the genus. Despite the relatively low susceptibility to bleaching, the most recent bleaching event (2017) resulted in over 75% mortality of Porites in shallow-water habitats of Abu Dhabi. Elsewhere, however, Porites are in better shape. For example, Porites species are relatively stable in Dubai. In Fujairah, Porites species are increasing, likely recovering from an earlier decline after a massive harmful algal bloom and cyclone in 2007-2008. Although recent (post-2011) data are limited, there have been no major disturbances since then. As this species is more abundant in areas that are improving in status, it is suspected that overall declines in the UAE are likely approaching but not exceeding 30% over three generations (1989-2019). Therefore, it is listed as Near Threatened under criterion A2bc. No regional adjustment is made to the Near Threatened listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species is reported from UAE waters in both the Gulf and Sea of Oman (Riegl et al. 2012, Grizzle et al. 2016).Elsewhere, this species is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species is frequently a dominant species of back reef margins, lagoons and some fringing reefs, and generally can be found to depths of 30 m. It is one of the predominant framework builders, sometimes building monospecific reef frameworks or contributing to pocilloporid reef building (Glynn 2001). It is a relatively slow-growing species with reported growth rates of 8.4 mm/year in Costa Rica and 8.1 mm/year in the Galápagos; however, it can grow as fast as 14 to 19 mm/year during the first few years (Guzmán and Cortes 1993, Cortés and Guzmán 1998, Guzmán and Cortés 1989). This species utilizes a gonochoristic reproductive strategy (except from Caño Island, Costa Rica), and is presumably a broadcaster spawner (Glynn et al. 1994). Glynn et al. (1994) suggested that eastern Pacific populations appeared to be reproductively active over multiple annual intervals, including periods of relatively low temperature. According to Glynn et al. (1994), fecundity can vary between regions; P. lobata has higher fecundities at Caño Island, Costa Rica, and Uva Island, Panama, than in the Galápagos Islands, where water temperatures are lower and more seasonally variable. Moreover, Glynn et al. (1994) suggest that P. lobata reproduces twice per year in thermally high and stable environments. Fecundity of this coral appears to benefit from moderate sea warming events, but may decline dramatically during unusually strong thermal anomalies (Glynn et al. 1994). After 1983, observations of sexual recruitment have been rare to infrequent in the eastern Pacific; however sexual recruitment has been observed in some areas of the Galápagos Islands (Glynn et al. 1994). The almost complete absence of sexual recruitment for this species in the eastern Pacific may be due to high larval mortality in the water column; as well as increased levels of competition with benthic alga, and increased densities of grazers and bioeroders following the 1982-83 El Niño event (Glynn et al. 1994).Porites lobata can also reproduce asexually by fragmentation (Guzmán and Cortés 1989, Cortés and Guzmán 1998, Cortés and Jiménez 2003). In the eastern Pacific the incidental feeding activities of the triggerfish Pseudobalistes naufragium can generate fragments that survive to form new colonies (Guzmán and Cortés 1989, Cortés and Guzmán 1998, Glynn et al. 1994). This form of fragmentation is common in Costa Rica and Panama, but uncommon in the Galápagos Islands (Glynn et al. 1994). Fragmentation also occurs by initial weakening of colonies by bioeroders; P. lobata colonies possess high densities of boring bivalves (Lithophaga spp.), which erode the skeletal structure, a process that can also lead to fragmentation (Cortés and Jiménez 2003, Glynn et al. 1994).At least eight fish species feed on live corals, with their feeding strategies ranging from removing mainly live tissue and causing little damage to the skeleton, to abrading or breaking apart colonies in the feeding process, such as during feeding of Arothron meleagris and Pseudobalistes naufragium (Guzmán and Cortes 1989, Glynn 2001). It is commonly grazed by the puffer Arothron meleagris (Guzmán and Robertson 1989, Glynn et al. 1994).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).The genus is not particularly susceptible to bleaching, but is more prone to disease than many other corals. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by a number of localized threats. Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329945
Taxon name
Favia speciosa
Dana, 1846
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Favia speciosa
Dana, 1846
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
faviidae
Genus
Favia
Species
speciosa
Species authority
Dana, 1846
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Vulnerable
Abbreviated status
VU
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This massive coral is rare and uncommon along both coasts of the UAE. Species in the genus Favia have low susceptibility to bleaching, and experienced localized increases in size. A more recent bleaching event caused substantial declines of Favia spp. in shallow-water habitats of Abu Dhabi, exceeding 65%. Although declines are not suspected elsewhere in the UAE and colonies appear healthy around offshore islands (such as Sir Bu Nair), Abu Dhabi represents approximately half of this species' distribution in the UAE and it is therefore suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. However, given the rarity of this species in UAE waters, it may be more susceptible to the negative consequences of Allee effects than other Favia species, potentially leading to local extirpations. No regional adjustment is made to the Vulnerable listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species is reported from UAE waters in both the Gulf and Sea of Oman (Veron 2000, Riegl et al. 2012).Elsewhere, this species is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in all shallow, tropical reef environments. It is commonly found from 3-15 m, rarely from 1-2 m and 18-20 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanov, 2002). It is found on subtidal rock and rocky reefs, in the outer reef channel, on the back and foreslope, and in lagoons to 40 m. It can be found on inter-reef rubble substrate.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329944
Taxon name
Favites pentagona
(Esper, 1794)
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Favites pentagona
(Esper, 1794)
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
faviidae
Genus
Favites
Species
pentagona
Species authority
(Esper, 1794)
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Vulnerable
Abbreviated status
VU
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This massive coral is common along both coasts of the UAE. Species in the genus Favites have low susceptibility to bleaching, and experienced localized increases in size. However, a more recent bleaching event caused substantial declines of Favites spp. in shallow-water habitats of Abu Dhabi, exceeding 65%. No additional information on population trends is available, though it is present around offshore islands (such as Sir Bu Nair), which have generally experienced lesser impacts than elsewhere in the UAE. As Abu Dhabi represents approximately half of this species' distribution in the UAE and it is suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species occurs along both coasts of the UAE (Veron 2000, Riegl et al. 2012). Elsewhere, it is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow reef environments. This species is found on subtidal rock and rocky reefs, in the outer reef channel, on the back and foreslope, and in lagoons. This species is found to 25 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329943
Taxon name
Psammocora contigua
Esper 1797
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Psammocora contigua
Esper 1797
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
siderastreidae
Genus
Psammocora
Species
contigua
Species authority
Esper 1797
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Data Deficient
Abbreviated status
DD
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This Indo-Pacific coral has been reported from localities along both coasts of the UAE, but its distribution has been questioned. Species-specific information is limited. However, species in the genus Psammocora seem to be relatively resistant and resilient to anthropogenic stressors. The most important known threat is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in the UAE is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species has been reported from both coasts of the UAE (e.g., Sheppard and Sheppard 1991, Veron 2000, Riegl et al. 2012, R. Bento pers. comm. 2019); however, given the recent revision of the genus (Stefani et al. 2008, Benzoni et al. 2010), the distribution of this species remains uncertain.Elsewhere, it is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in widely in all reef environments, generally to depths of 30 m. It is commonly found from 9-15 m, and rarely at 1-5 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanova 2002).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature and salinity variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. This species exhibited moderate to high bleaching and moderate mortality in the 1998 bleaching event in Palau (Brunno et al. 2001). In addition to global climate change, corals are also threatened by disease and a number of localized threats. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329942
Taxon name
Acropora clathrata
(Brook, 1891)
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Acropora clathrata
(Brook, 1891)
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
acroporidae
Genus
Acropora
Species
clathrata
Species authority
(Brook, 1891)
Taxonomic notes and synonyms listed
This species is sometimes confused with the similar Acropora downingi (Riegl et al. 2012). Acropora orbicularis is now a synonym of this species.
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Critically Endangered
Abbreviated status
CR
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This acroporid coral is common but infrequent along both coasts of the UAE. Acroporids were dominant coral species historically, but have largely been extirpated from reefs within UAE waters since the 1970s. The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Species-specific population decline data are not available and therefore are inferred based on accelerating decline in coverage of Acropora from about 70% of coral cover in the 1970s to 1.4% in the 2010s. As a result, it is inferred that the population of this species has declined by at least 90% over the past three generations (30 years). Therefore, this species is listed as Critically Endangered A2bc. No regional adjustment is made to the Critically Endangered listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
Historically, this species occurred throughout the entire Gulf (Riegl et al. 2012). In UAE waters, it is known from both coasts (Grandcourt 2007, Riegl et al. 2012); however, acroporids have been largely extirpated from the UAE (Grizzle et al. 2016, Burt et al. 2019). Overall, only about 132 km<sup>2</sup> of coral reef habitat remains in UAE waters (Grizzle et al. 2016), though another estimate suggests coral habitat may be higher, up to 310 km<sup>2</sup> in Abu Dhabi alone (AED 2016); however, the cover of Acropora throughout much of the UAE is negligible.Elsewhere, it is widely distributed in the Indo-West Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments. It occurs on upper reef slopes, back reef margins and fringing reefs at depths of 8-20 m.The age of first maturity of most reef-building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008) as well as shifts in community structure (e.g,. Bento et al. 2016, Grizzle et al. 2016, Burt et al. 2019 ). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Other threats include the crown-of-thorns starfish (Acanthaster planci), which has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within since the 1990s (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004), supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329941
Taxon name
Echinophyllia aspera
(Ellis & Solander, 1788)
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Echinophyllia aspera
(Ellis & Solander, 1788)
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
pectiniidae
Genus
Echinophyllia
Species
aspera
Species authority
(Ellis & Solander, 1788)
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Data Deficient
Abbreviated status
DD
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This species likely occurs in UAE waters of the Sea of Oman, but data are extremely limited on its distribution. The most important known threat is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species was previously reported as occurring along both coasts of the UAE (Veron 2000), including a single locality in Fujairah (R. Bento pers. comm. 2019), as well as in Oman (Salm 1993). However, it may be restricted to the northern Gulf (Riegl et al. 2012), particularly Iranian waters (e.g., Owfi et al. 2013, 2015). No additional information is available regarding its distribution in the UAE. Elsewhere, this species is widely distributed in the Indo-West Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in shallow, tropical reef environments. It is found in most reef environments, especially lower reef slopes, lagoons, and fringing reefs. Echinophyllia is found in most fore reef areas, but has a preference for slightly shaded spots on the reef slopes (Wood 1983). In the Red Sea, it is found in mid to deep (30-40 m) water (Sheppard and Sheppard 1991). Colonies of Echinophyllia may reach a metre or more in diameter (Wood 1983).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329940
Taxon name
Cyphastrea serailia
(Forskål, 1775)
Uploaded by
National Red List Database
Taxonomic information
Scientific name
Cyphastrea serailia
(Forskål, 1775)
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
faviidae
Genus
Cyphastrea
Species
serailia
Species authority
(Forskål, 1775)
Location and scope
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Conservation Status
Assessed as
Vulnerable
Abbreviated status
VU
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN

(see Assessment details)

Assessment rationale/justification
This massive coral is common along both coasts of the UAE. Faviids in general have low susceptibility to bleaching, and experienced localized increases in size. However, a more recent bleaching event caused substantial declines of Cyphastrea spp. in Abu Dhabi, exceeding 50%. Declines are suspected elsewhere in the UAE but are not thought to be as extensive (e.g., healthy colonies remain near offshore islands such as Sir Bu Nair). It is suspected that declines throughout the UAE exceed 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2b. No regional adjustment is made to the Vulnerable listing.
Assessment details
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Further information
Endemism (according to assessment)
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species occurs along both coasts of the UAE (Veron 2000, Riegl et al. 2012). Elsewhere, it is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Habitat and systems
Ecological system type
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat
Habitat details as listed in assessment
This species occurs in all tropical reef environments. It is commonly found from 3-11 m, rarely 1-2 m and 12-15 m, in the South China Sea and Gulf of Siam (Titlyanov and Titlyanova 2002). It is very common on shallow reef flats in highly fluctuating environments, and is resistant to warming and high salinity. This species is found on subtidal rock and rocky reefs, in the outer reef channel, on the back and foreslopes of reefs, in lagoons and in inter-reef soft and rubble substrate. This species is found to at least 50 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats and conservation measures listed
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In Malaysia and Singapore, it is one of the Cyphastrea species that is more susceptible to bleaching, but it recovers fast. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.