Assessment ID
329929
Taxon name
Favites complanata
Uploaded by
National Red List Database
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329928
Taxon name
Favia pallida
Uploaded by
National Red List Database
Scientific name
Favia pallida
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
faviidae
Genus
Favia
Species
pallida
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Vulnerable
Abbreviated status
VU
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This massive coral is common along both coasts of the UAE. Species in the genus Favia have low susceptibility to bleaching, and experienced localized increases in size. However, a more recent bleaching event caused substantial declines of Favia spp. in shallow-water habitats of Abu Dhabi, exceeding 65%. Although declines are not suspected elsewhere in the UAE and colonies appear healthy around offshore islands (such as Sir Bu Nair), Abu Dhabi represents approximately half of this species' distribution in the UAE and it is therefore suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species is reported from UAE waters in both the Gulf and Sea of Oman (Veron 2000, Riegl et al. 2012).Elsewhere, this species is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species occurs in shallow and deeper tropical reef environments. It is found in all reef environments, often a dominant species of back reef margins. This species is found on subtidal rock and rocky reefs, in the outer reef channel, on the back and foreslope, and in lagoons. It can sometimes be found in inter-reef soft substrate. This species is found to at least 50 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329927
Taxon name
Platygyra crosslandi
Uploaded by
National Red List Database
Scientific name
Platygyra crosslandi
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
faviidae
Genus
Platygyra
Species
crosslandi
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Data Deficient
Abbreviated status
DD
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This species has been reported from both coasts of the UAE, but its presence there has been questioned; as such, its distribution in UAE waters is uncertain. Faviids in general have low susceptibility to bleaching and experienced local increases in size. However, a more recent bleaching event caused substantial declines of Platygyra spp. in shallow-water habitats of the Gulf. As the distribution of this species in UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species has been reported as occurring along both coasts of the UAE (Veron 2000), including Abu Dhabi (R. Bento pers. comm. 2019); however, Riegl et al. (2012) states that insufficient information is available to justify the records from the Gulf (Riegl et al. 2012). As such, its distribution in the UAE is uncertain.Elsewhere, it is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species occurs in most tropical reef environments to depths of 20 m. This species is found on the back and foreslope of the reef and in lagoons. They may form colonies a meter or more in diameter (Wood 1983).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329926
Taxon name
Porites nodifera
Uploaded by
National Red List Database
Scientific name
Porites nodifera
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
poritidae
Genus
Porites
Species
nodifera
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Endangered
Abbreviated status
EN
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This stony coral is found along both coasts of the UAE. While it can be locally common in some areas, it is rare in the Gulf and requires high quality coral habitat. This species is common in western Abu Dhabi and becomes less common northeast along the UAE coast to Fujairah. Species-specific population trend data are not available, therefore are based on the data available for the genus. Despite its relatively low susceptibility to bleaching, the most recent bleaching event (2017) resulted in over 75% mortality of Porites in shallow-water habitats of Abu Dhabi; no additional data are available from elsewhere in the UAE. However, as the majority of this species' distribution in the UAE occurs in Abu Dhabi, the overall population decline likely approaches that documented in Abu Dhabi and certainly exceeds 50%. This species is therefore listed as Endangered A2bc. No regional adjustment is made to the Endangered listing.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Endemism Notes
Endemism Notes
Regionally endemic to Northwest Indian Ocean (Gulf, Sea of Oman, Arabian Sea, Red Sea)
Taxon distribution as listed in assessment
This species is reported from UAE waters in the Gulf and Sea of Oman (Riegl et al. 2012, R. Bento pers. obs. 2019).It is regionally endemic to the northwestern Indian Ocean, where it is known from the Gulf, Sea of Oman, Arabian Sea and Red Sea (Veron 2000).
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species is found in shallow water, generally less than 5 m but occasionally to 15 m. It is tolerant of high salinities, up to 48 ppt (Sheppard and Sheppard 1991).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).The genus is not particularly susceptible to bleaching, but is more prone to disease than many other corals. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by a number of localized threats. Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329925
Taxon name
Acropora florida
Uploaded by
National Red List Database
Scientific name
Acropora florida
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
acroporidae
Genus
Acropora
Species
florida
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Data Deficient
Abbreviated status
DD
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This species has been reported along the Gulf coast of the UAE, but its presence in the Gulf has been questioned. In general, acroporids were dominant coral species historically, but have largely been extirpated from reefs within UAE waters since the 1970s. The most important known threat for acroporids is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species within UAE waters is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to acroporid corals in UAE, and their resultant decline, if this species is determined to occur in the Gulf, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species was reported from Dubai, UAE (Riegl 1999, 2002; Riegl et al. 2001) but was absent during a later survey (Burt et al. 2008) and not discussed in a review of the hard corals of the Gulf (Riegl et al. 2012). Additional research is needed to verify the distribution of this species with the UAE. Elsewhere, it is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species occurs in shallow reef environments. This species is found subtidally on reef tops, walls and slopes to 30 m (Wallace 1999).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Other threats include the crown-of-thorns starfish (Acanthaster planci), which has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within since the 1990s (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004), supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329924
Taxon name
Psammocora stellata
Uploaded by
National Red List Database
Scientific name
Psammocora stellata
Assessed taxon level
Species
Higher level taxonomic groupings
Invertebrates
Corals
Kingdom
Animalia
Phylum
cnidaria
Class
anthozoa
Order
scleractinia
Family
siderastreidae
Genus
Psammocora
Species
stellata
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Vulnerable
Abbreviated status
VU
Qualifying criteria (if given)
A2bc
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This coral occurs along both coasts of the UAE, where it is generally rare. The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. However, species in the genus Psammocora seem to be relatively resistant and resilient to anthropogenic stressors. Species-specific information is limited; it is generally rare but present in UAE waters. In Abu Dhabi, it was recorded at few sites and at lower abundance after the 2017 mass bleaching; given its rarity, estimates of population decline are based on the total coral mortality. The 2017 bleaching event caused substantial declines of even resilient coral taxa (e.g., Favia and Favites) and overall, coral mortality exceeded 70% in shallow-water habitats of Abu Dhabi. As Abu Dhabi represents approximately half of this species' distribution in the UAE, it is suspected that population declines have exceeded 30% over the past three generation lengths (30 years). Therefore, this species is listed as Vulnerable A2bc. No regional adjustment is made to the Vulnerable listing.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species is reported from UAE waters in the Gulf (Riegl et al. 2012) and may also occur along the Sea of Oman coast. However, individuals identified as P. stellata from Kuwait were determined to be hybrids of P. stellata and P. contigua (Stefani et al. 2008); the status of individuals from elsewhere in the Gulf is unknown. Elsewhere, it is widely distributed in the Indo-Pacific.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species occurs on shallow wave washed rock, or at depths of 15-20 m depth on coarse sand bottoms (Hickman 2005). In general, species of Psammocora are very slow growing corals; with a calculated growth rate of 0.6cm/year for P. superficialis in Costa Rica (Guzmán and Cortés 1989, 1993). Sexual reproduction is important, but asexual reproduction and fragmentation are more effective strategies for colonizing free areas within the reef (Cortés and Guzmán 1998); as such, these species are considered to be among the most opportunistic because of the capacity to rapidly recolonize open areas after disturbances (Guzmán and Cortés 2001).The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. This species experienced localized population declines after El Niño events (for example, Española Island, Galapagos: Glynn 1997 and Manuel Antonio and Punta Cambial, Costa Rica: Jiménez and Cortés 2001, 2003). However, it is more resistant to bleaching than shallow-water corals such as Pocillopora (Feingold 1996). In some localities, species of Psammocora were overgrown by algae after a bleaching event. For example, large aggregations of this species were overgrown by thick mats of Caulerpa after the 1982-1983 El Niño event in Panama (Glynn 1997); similar overgrowth of Psammocora-dominated reefs occurred at La Penca, Costa Rica (Bernadette et al. 2006). At Manuel Antonio, Costa Rica, species of Psammocora were completely overgrown by a brown algae (Jimenez and Cortés 2001). Species of Psammocora are also negatively impacted by predation by the crown-of-thorns starfish, Acanthaster planci, and pufferfish, Arothron meleagris (Cortés and Guzmán 1998, Reyes-Bonilla et al. 1998). These voracious predators of reef-building corals are found throughout the Pacific and Indian Oceans, and the Red Sea. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts have become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. The pufferfish, Arothron meleagris, is capable of reducing populations of Psammocora species if other preferred coral species such as Porites lobata are absent (Cortés and Guzmán 1998).Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329923
Taxon name
Epinephelus bleekeri
Uploaded by
National Red List Database
Scientific name
Epinephelus bleekeri
Assessed taxon level
Species
Higher level taxonomic groupings
Vertebrates
Fishes
Kingdom
Animalia
Phylum
chordata
Class
actinopterygii
Order
perciformes
Family
epinephelidae
Genus
Epinephelus
Species
bleekeri
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Vulnerable
Abbreviated status
VU
Qualifying criteria (if given)
A2bcd
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This reef-associated species occurs throughout UAE waters. It is exploited by grouper fisheries, and is common in local markets in the Arabian Gulf, but apparently less common in UAE markets in general. It appears likely that this species is overfished in the UAE, based on the status of Epinephelus coioides, which this species (E. bleekeri) continues to be confused with in fishery statistics. Anecdotal observations of its occurrence in fish markets over the past 10-29 years indicate that population declines have occurred since about 1995, or a 24-year time period. Catch of E. coioides has declined by about 51% in Abu Dhabi over the past 12 years (since 2007), or approximately one and a half generation lengths. Applying data from a proxy species, three generation lengths is about 24 years. The status of population(s) outside the UAE is not well-understood, though it is also taken by fisheries elsewhere, including in the Sea of Oman. Based on catch data and fish market observations, this species has undergone a suspected decline of at least 30% and possibly more since about 1995, or over the past three generation lengths. Fishing effort is expected to remain the same or increase in the future. Therefore, it is listed as Vulnerable A2bcd. Further action is needed to improve fishery monitoring and data collection. Research on life history parameters is needed to improve the estimate of generation length.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species occurs throughout UAE waters. Globally, it is widespread in the Indo-West Pacific (Heemstra and Randall 1993, K. Rhodes pers. comm. 2016). Its depth range is 3 to 104 metres.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This demersal species inhabits mostly shallow coral and rocky banks, can be associated with non-reefal and turbid habitat, and is not known from well-developed coral reefs (Randall 1995). Juveniles can be commonly taken in estuaries. Its maximum standard length is 87 cm (Richu et al. 2018). Life history data are lacking, but due to similarities, Epinephelus maculatus is considered an appropriate proxy to estimate generation length. The age at first maturity for E. maculatus females is 2.8 years and males is 4 years and longevity is 13 years (Rhodes et al. 2016). When applying an age at first reproduction of 3 years and longevity of 13 years, its estimated generation length is 8 years based on the following equation recommended by the IUCN Red List methods: Age at first reproduction + (Age at last reproduction -“ age at first reproduction)/2. Off India, Richu et al. (2018) estimated the longevity as 9.7 years and Kandula et al. (2015) reported a total length at first sexual maturity of about 36 cm.
Threats listed in assessment
Overexploitation is a major threat to this species. Degradation of estuaries (juvenile habitat) has been severe in the UAE and the Arabian Gulf region due to coastal development and pollution. Corals in the UAE and Arabian Gulf have severely declined due to the increasing frequency of mass bleaching events caused by rising water temperatures, which is a consequence of climate change, as well as pervasive coastal development (Riegl et al. 2018, Burt et al. 2019).
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329922
Taxon name
Epinephelus epistictus
Uploaded by
National Red List Database
Scientific name
Epinephelus epistictus
Assessed taxon level
Species
Higher level taxonomic groupings
Vertebrates
Fishes
Kingdom
Animalia
Phylum
chordata
Class
actinopterygii
Order
perciformes
Family
epinephelidae
Genus
Epinephelus
Species
epistictus
Taxonomic notes and synonyms listed
This species is sometimes misidentified as Epinephelus magniscuttis or Epinephelus heniochus.
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Data deficient
Abbreviated status
DD
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
In the UAE, this relatively deep-living, reef-associated species occurs only in the Sea of Oman. It is heavily exploited in grouper fisheries that operate along the UAE eastern coast and neighboring areas of Oman, and these are considered to be part of the same population. Anecdotal information indicates that catch of this species has declined by 50% since about 2000, but quantified data are not available. Life history data are also not available, which prevents an estimate of generation length at this time. Due to the lack of information and major threat from overexploitation, it is listed as Data Deficient in the UAE. In addition to improvements in fisheries monitoring, research is also needed on its life history.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
In UAE waters, this species occurs only in the Sea of Oman. Its occurrence in the Arabian Gulf apparently excludes the southern portion from Qatar to the UAE. Globally, it is somewhat patchily distributed in the Indo-West Pacific from South Africa, Mozambique, the Red Sea, the Arabian Gulf, India, Indonesia, the South China Sea, southern Japan, Papua New Guinea and the Gulf of Carpentaria, northern Australia. It is not present in the Philippines (Y. Sadovy pers. comm. 2017). Its depth range is 71-291 metres.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species occurs in deeper waters on rocky reef, and sometimes sandy bottom (Heemstra and Randall 1993, McIlwain et al. 2011). Its maximum total length is 80 cm and may be a protogynous hermaphrodite (Heemstra and Randall 1993).
Threats listed in assessment
Overfishing is a potential major threat to this species in the UAE.
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329921
Taxon name
Aethaloperca rogaa
Uploaded by
National Red List Database
Scientific name
Aethaloperca rogaa
Assessed taxon level
Species
Higher level taxonomic groupings
Vertebrates
Fishes
Kingdom
Animalia
Phylum
chordata
Class
actinopterygii
Order
perciformes
Family
epinephelidae
Genus
Aethaloperca
Species
rogaa
Taxonomic notes and synonyms listed
Based on molecular phylogenetic analysis, Craig and Hastings (2007) included the species Aetheloperca rogaa within the genus Cephalopholis.
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Data deficient
Abbreviated status
DD
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This reef-associated species occurs throughout UAE waters, but is currently relatively rare. According to anecdotal information on catch observations from about 30 years ago, it may have been more common previously. Fishing activity may have caused population declines in the past, but little data are available. Due to the lack of information on its population status in the UAE and potential major threat from fishing and possibly coral reef habitat decline, it is listed as Data Deficient in the UAE.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species occurs throughout UAE waters. Globally, it is widespread in the Indo-West Pacific. Its depth range is 1 to 60 metres.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species inhabits coastal reefs and lagoons, often over silty bottoms, or near/in caves and holes in the reef (Heemstra and Randall 1993). It also commonly occurs on reefs without high coral cover. Small juveniles (< 6.0 cm total length) mimic Centropyge flavicauda, C. multispinis, and C. flavipectoralis (Snyder et al. 2001). It primarily feeds on small fishes (including Pempheris spp.), also on stomatopods (Pseudosquilla spp.) and crustaceans (Morgans 1982). This species spawns throughout the year and matures at about 35 cm standard length (Morgans 1982). It is not known to form spawning aggregations (Society for the Conservation of Reef Fish Aggregations database accessed January 2017). In Australia, an experimental line fishing trials examined 52 individuals of this species that measured between 25 to 47 cm total length and reported the ages as ranging from 13 to 18 years (Mapleston et al. 2009).
Threats listed in assessment
Fishing activity may cause declines in the UAE, but this is poorly understood. Its occurrence in the trap (gargoor) fishery as ghost fishing may also cause mortality in this species. Corals in the UAE and Arabian Gulf have severely declined due to the increasing frequency of mass bleaching events caused by rising water temperatures, which is a consequence of climate change, as well as pervasive coastal development (Riegl et al. 2018, Burt et al. 2019).
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.
Assessment ID
329920
Taxon name
Epinephelus stoliczkae
Uploaded by
National Red List Database
Scientific name
Epinephelus stoliczkae
Assessed taxon level
Species
Higher level taxonomic groupings
Vertebrates
Fishes
Kingdom
Animalia
Phylum
chordata
Class
actinopterygii
Order
perciformes
Family
epinephelidae
Genus
Epinephelus
Species
stoliczkae
Taxonomic notes and synonyms listed
This species can be confused with Epinephelus rivulatus, which is superficially similar.
Specific locality or subnational name or regional name
United Arab Emirates (the)
Scope (of the Assessment)
National
Countries included within the scope of the assessment
United Arab Emirates (the)
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Not_assigned
Assessed as
Least Concern
Abbreviated status
LC
Criteria system used
IUCN
(see Assessment details)
Assessment rationale/justification
This reef-associated species occurs throughout UAE waters. It is naturally uncommon on the Arabian Gulf coast, but common on the eastern coast. It is regularly taken in grouper fisheries on the eastern coast, and anecdotal information indicates it is declining slightly each year over the past decade in fish markets there. Exploitation is not considered to be driving declines approaching a Near Threatened or threatened level at this time; therefore, it is listed as Least Concern in the UAE. It is recommended to improve fisheries monitoring for this species.
Year assessed
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Criteria system used
IUCN
Reference for methods given
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemic to region
Not assigned
Taxon distribution as listed in assessment
This species occurs throughout UAE waters (F. Yaghmour and J. Burt pers. comm. 2019). Globally, it has a tropical to subtropical (~10 to 30'°N) continental distribution from the Red Sea, and the northwest Indian Ocean to Pakistan. It was recently reported from Iraq (Almukhtar et al. 2012). Its depth range is 5-50 metres.
Is there a map available in assessment?
Yes
Terrestrial
Not_assigned
Freshwater
Not_assigned
Marine
Yes
Habitat details as listed in assessment
This species generally occurs on shallow sandy bottoms near rocks or small coral heads, but is not known from well-developed coral reefs. Its maximum total length is about 38 cm.
Threats listed in assessment
Overfishing is not considered to be driving declines approaching a Near Threatened or threatened level in the UAE at this time. Corals in the UAE and Arabian Gulf have severely declined due to the increasing frequency of mass bleaching events caused by rising water temperatures, which is a consequence of climate change, as well as pervasive coastal development (Riegl et al. 2018, Burt et al. 2019).
Publication
Ralph, G.M., Stump, E., Linardich, C., Bullock, R.W., Carpenter, K.E., Allen D.J., Hilton-Taylor, C., Al Mheiri, R., and Alshamsi, O. 2021. UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes. 2021. Ministry of Climate Change and Environment, Dubai, United Arab Emirates.